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This work documents the spatial development of a triad of instability waves consisting 
of a plane TS mode and a pair of oblique modes with equal-opposite wave angles 
which are undergoing subharmonic transition in Falknerdkan boundary layers with 
adverse pressure gradients. The motivation for this study is that for wings with 
zero or moderate sweep angles, transition is most likely to occur in the adverse 
pressure gradient region past the maximum thickness point and, starting with low 
initial amplitudes, subharmonic mode transition is expected to be the predominant 
mechanism for the first growth of of three-dimensional modes. The experiment follows 
that of Corke & Mangano (1989) in which the disturbances to produce the triad of 
waves are introduced by a spanwise array of heating wires located near Branch I. 
The initial conditions are carefully controlled. These include the initial amplitudes, 
frequencies, relative phase and oblique wave angles. The basic flow consisted of 
a Falkner-Skan (Hartree) boundary layer with a dimensionless pressure gradient 
parameter in the range -0.06 d f l H  < -0.09. The frequency of the TS wave was 
selected to be near the most amplified based on linear theory. The frequency of the 
oblique waves was the subharmonic of the TS frequency. The oblique wave angles 
were set to give the largest secondary growth (F= 60"). Compared to similar conditions 
in a Blasius boundary layer, the adverse pressure gradient was observed to lead to 
an extra rapid growth of the two- and three-dimensional modes. In this there was 
a relatively larger maximum amplitude of the fundamental mode and considerably 
shortened amplitude saturation region compared to zero pressure gradient cases. 
Analysis of these results includes frequency spectra, the wall-normal distributions of 
each mode amplitude, and mean velocity profiles. Finally, the streamwise amplitude 
development is compared with the amplitude model from the nonlinear critical layer 
analysis of Goldstein & Lee (1992). 

1. Background 
The basic understanding and accurate prediction of transition from laminar to 

turbulent flow in viscous boundary layers are of great practical interest. Transition 
in a decelerated flow field (with an adverse pressure gradient) is especially relevant 
to airfoils which are not highly swept. In these cases the dominant linear mode is 
expected to be Tollmien-Schlichting (TS), and transition is expected to only occur in 
the adverse pressure gradient region which occurs past the maximum thickness point. 
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Because of the multitude of known and unknown effects of external disturbances, the 
development of a general theory of transition is still far from complete. For instance, 
the empirical eN-method (Van Ingen 1956) is still the standard tool in engineering 
practice, although it is known to ignore essential factors of the physics of transition, 
such as the initial amplitudes of disturbances, parametric interactions and nonlinear 
stages, and therefore may be misleading if used beyond the supporting data base. 

The motivation for studying the transition process comes from the need to predict 
if and where transition occurs. Whether hypersonic vehicles can fly will be determined 
to a large extent by the accurate prediction of transition. Moreover, by controlling 
the state of the boundary layer, the performance of aircraft, particularly with respect 
to range and economy of operation, can be increased significantly. 

Experiments on boundary layer transition conducted in low-disturbance wind tun- 
nels have established three basic stages. Transition starts with the growth of the most 
amplified modes (wavenumbers and frequencies) predicted from linear stability the- 
ory. In a two-dimensional boundary layer over an essentially flat surface, these modes 
are TS waves. The frequencies and growth rates of these waves, which constitute the 
initial stage of linear instability, are predicted from the Orr-Sommerfeld equation 
for temporally growing disturbances in a locally parallel flow. In the second stage, 
three-dimensional spatially periodic instability modes appear. Starting with low initial 
amplitudes, the most likely three-dimensional modes are produced by a subharmonic 
resonance with the initial TS wave. This produces staggered A-shaped features in the 
unsteady vorticity field, with a spanwise wavelength which corresponds to an initial 
pair of oblique modes with equal-opposite wave angles. The third stage involves 
the generation of other nonlinear modes, which are derived from sum and difference 
interactions of the initial resonant modes. Included in this is a three-dimensional 
mode at the initial TS frequency, and a spanwise-periodic distortion of the mean flow. 

The roots to understanding subharmonic transition in Blasius boundary layers 
comes from the theoretical work of Craik (1971) and Herbert (1983), and experiments 
by Kachanov, Koslov & Levchenko (1977), Kachanov & Levchenko (1984) Kachanov 
(1987), Saric & Thomas (1984), and Corke & Mangano (1989). Corke & Mangano 
were the first to simultaneously introduce a plane TS wave and a pair of oblique 
waves to directly set up a triad resonance. Starting with low initial amplitudes, 
they investigated three conditions of oblique waves with spanwise wavenumbers : one 
which satisfied Craik’s model, and the other two which could only lead to resonance 
by the Herbert mechanism. By means of detailed hot-wire velocity surveys and 
smoke-wire flow visualization, they measured the amplitude and phase distributions 
in three space dimensions and documented the staggered peak-valley A-structures. 
The maximum amplification rates and spanwise wavenumbers were found to closely 
agree with the theoretical predictions of Herbert & Bertolotti (1985). 

Recently, Goldstein & Lee (1992) have developed a nonlinear theory for a resonant 
triad of inviscid Rayleigh waves in an adverse pressure gradient boundary layer. 
In their analysis, the initial interaction is parametric. However, once oblique mode 
amplitudes become sufficiently large, the resulting growth rates of the triad modes 
become fully coupled, and nonlinear interactions have a dominant effect. The non- 
linear interactions include a cubic self-interaction of the oblique modes, cubic mutual 
interaction of the three-dimensional mode with the two-dimensional mode, and a 
quartic back interaction of the three-dimensional mode onto the two-dimensional 
mode. The analysis of Goldstein & Lee was the first to consider coupled amplitude 
equations of this type. 

Following the approach of Goldstein & Lee, Mankbadi, Wu & Lee (1993) analyzed 
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the zero pressure gradient (Blasius) boundary layer in the quasi-equilibrium limit. 
Here, the fully nonlinear interactions of a triad of instability waves are considered in 
a matched asymptotic expansion in their nearly common viscous critical layers. The 
expansion was done for conditions in the vicinity of the upper branch of the linear 
stability neutral curve. In this work, there is no back-reaction effect on the two- 
dimensional wave at the lowest order. The analysis revealed a double-exponential 
growth of the oblique waves with resonance. During this stage, the plane wave 
continues to follow linear theory. When the amplitude of the oblique waves exceeds 
that of the plane wave by a certain amount, a nonlinear stage comes into effect in 
which the self-interaction of the oblique waves becomes important. This was found 
to lead to an oscillatory amplitude saturation stage. 

More recently, Lee (1994) extended the inviscid analysis of Goldstein & Lee to 
include viscous effects and a generalized scaling. His analysis was shown to be valid 
for Falkner-Skan boundary layers without (Blasius) and with pressure gradients. 
He found that his O( 1)-viscosity solution approached the viscous limit solution of 
Mankbadi et al. (1993) as viscosity became large. A primary focus of Lee’s work is 
on the quartic back-reaction term in the Goldstein & Lee analysis. As opposed to the 
oscillatory saturation that occurs in the quasi-equilibrium conditions of Mankbadi 
et al. (1993). this term produces faster-than-exponential growth of the parametric 
resonance stage and ultimately a singularity at a finite downstream position. 

In addition to Goldstein & Lee (1992) and Lee (1994), the influence of pressure 
gradients on resonant-triad evolution has been studied by Zelman & Maslennikova 
(1993a,b) and Herbert & Bertolotti (1985). Zelman & Maslennikova used a first- 
order weakly nonlinear stability analysis of a triad of TS waves. The work of Herbert 
& Bertolotti follows the approach of Herbert (1983) and involves the secondary 
instability of a basic flow consisting of the mean flow and a plane TS wave to 
three-dimensional Squire modes. All these are applicable to the parametric resonance 
development region which governs the enhanced growth of the subharmonic three- 
dimensional mode. 

Kloker & Fasel (1990) and Kloker (1993) performed a fully nonlinear direct 
Navier-Stokes spatial calculation for Falkner-Skan boundary layers. In most of their 
calculations, they used a large adverse pressure gradient which was close to separation 
( f i ~  = -0.18). Their input disturbances consisted of a plane wave ( F  x lo6 = 108) 
and pair of oblique waves at the subharmonic frequency. With this they were able 
to follow the development into the nonlinear stage which included the generation of 
interacted (sum and difference) modes and energy saturation. 

1.1. Objective 
In this paper we experimentally investigate the effect of mild adverse pressure gra- 
dients on subharmonic mode transition. For this we utilize the setup of Corke & 
Mangano (1989) in which periodic disturbances are introduced to excite a resonant 
triad with known initial amplitudes, frequencies, and oblique-mode wave angles. The 
streamwise development of these modes will be documented through their linear, 
parametric and fully coupled stages so that it can be compared to a general coupled 
amplitude model which follows that of Goldstein & Lee (1992). 

2. Experimental setup 
The experiment was performed in the IIT Boundary Layer Stability Wind Tunnel 

which has been exclusively developed for conducting experiments on instability and 
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FIGURE 1. Schematic of measurement section showing location of heating wire array and movable 
panels for pressure gradient control. 

transition in Blasius boundary layers using computer-controlled mode forcing and 
data acquisition. All the documentation of the wind tunnel is presented by Corke & 
Mangano (1989). 

The wind tunnel is a low-speed, low-disturbance, open-circuit type which is well 
suited for boundary layer transition experiments. A schematic of the wind tunnel 
measurement section is shown in figure 1. The turbulence intensity (u'/U,) in the 
test section is approximately 0.07%. The measurement section is rectangular in cross- 
section with dimensions of 73.7 cm high by 15.25 cm deep by 2.46 m long. The 
boundary layer develops on the back wall of the test section, which consists of a 
stainless steel surface bonded to a honeycomb composite. The surface is flat and has 
a nearly optical-mirror finish. Access with hot wires is made through 15 slots in a 
clear Plexiglas panel which forms the front wall of the measurement section. The 
slots are positioned 102, 118, 134, 138, 143, 147, 155, 162 and 170 cm downstream 
of the heating wire array. Each slot has a removable insert which provides a smooth 
flush inside surface when not in use. Rubber strips are used to seal any gap around 
the hot-wire probe body. 

The test section is subdivided into three regions by top and bottom panels. The 
smaller top and bottom regions are at  a slightly lower pressure than the middle 
measurement region. The pressure difference is set up by a perforated grid at the 
end of the middle section. A small gap in the junction of the top and bottom panels 
and the back wall is adjusted to draw off fluid and prevent the destabilization of the 
three-dimensional corner flow. 

Different streamwise pressure gradients were set by moving the top and bottom 
panels to increase or decrease the cross-sectional area of the middle measurement 
region. In this experiment, two adverse pressure gradients (dpldx > 0) corresponding 
Falkner-Skan (Hartree) parameters PH = -0.06 and PH = -0.09 were used. These 
relatively small pressure gradients were chosen to provide a long enough region to 
measure what was expected to be an 'explosive' growth of the subharmonic mode. The 
pressure gradient was applied in the downstream half of the measurement section. 
Figure 2 shows a comparison between the theoretical and measured free-stream 
velocity for the two pressure gradients. 

The panels in the upstream half of the measurement section were adjusted to 
produce a zero pressure gradient (PH = 0). This was in the region of Branch I, 
where the heating wires were located. The advantage of a zero pressure gradient 
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in this region was to provide an initial slower, more controlled growth of the input 
disturbances into the region of the measurement slots. It also allowed some cross- 
checks to the previous experiments such as Corke & Mangano (1989), Korategere 
(1990) and Hsia (1993) which were performed in this facility with zero pressure 
gradient. 

As with our earlier experiments, we introduce both two- and three-dimensional 
disturbances into the boundary layer in order to excite a plane TS wave and oblique 
wave pairs. This is achieved using a spanwise array of 0.05 mm diameter heating wires 
which are suspended at the height of the critical layer, at the streamwise location 
just upstream of the lower linear stability neutral branch (based on a Blasius flow). 
The wires are periodically heated to introduce controlled perturbations through local 
changes in the air viscosity. Corke & Mangano (1989) showed that this is analogous 
to a wall-normal velocity perturbation. Each heating wire is individually controlled 
to allow a spanwise phase change between adjacent wires. Changing the phase allows 
different oblique wave angles. The plane (two-dimensional) wave is introduced using 
a separate single wire which spans the full width of the measurement section. This 
is located upstream of the short-wire segments. The amplitude, frequency and phase 
of the periodic signal to the single (two-dimensional) wire are controlled separately 
from the three-dimensional wire segments. This allows us to independently change 
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Case /IH RX U, 
(m s-I) 

2-D -0.06 523-734 6.196-6.105 
2-D -0.06 523-734 6.196-6.105 
2-D -0.09 503-718 6.195-6.060 

0 -0.06 523-734 6.196-6.105 
1 -0.06 523-734 6.196-6.105 
2 -0.09 503-718 6.195-6.060 

F x lo6 
2D :3D 
96: - 
96: - 

96 :48 
96:48 
96 :48 

96: - 

TABLE 1. Experimental conditions. 

A 2 D  xu 
(V) (cm) 
26 +34 
32 +34 
30 +39 
26 +34 
32 +34 
30 +39 

the initial conditions to the two- and three-dimensional disturbances. Further details 
of the method are contained in the paper by Corke & Mangano (1989). 

A list of experimental conditions is contained in table 1. These were divided into 
six cases. In three of these (Cases 2-D) only a plane TS mode was excited. These were 
primarily used to make comparisons to linear stability theory. The other three cases 
correspond to when the two- and three-dimensional modes were combined. In two of 
these (1 and 2), they differed only in the initial amplitude of the two-dimensional mode. 
In table 1, F = 2n fv /U&,  where f is the physical frequency, R, = (Ucnx/v)1/2, where 
x is measured from xu and x, is the x-location of the Falkner-Skan virtual leading 
edge, and A z ~  is a reference voltage supplied to the two-dimensional heating wire. 

2.1. Instrumentation and processing 
A single hot-wire sensor, which was mounted on a motorized traversing mechanism, 
was used to measure the streamwise velocity component. The hot wire was operated 
in a constant-temperature mode. The voltage time series proportional to velocity 
was split into two parts and acquired through an A/D of a digital acquisition and 
control (DAC) computer. One part of the analog signal contained the d.c. part. This 
was d.c. biased and amplified by a fixed gain. The other analog signal had the d.c. 
removed by an analog band-pass filter which was set to high pass at 1.0 Hz and low 
pass at 100 Hz. The latter was to prevent frequency aliasing. The a.c.-containing 
signal was then passed through a computer-controlled programmable gain circuit. 
During acquisition, the gain was varied to maintain the highest possible resolution 
through the A/D. The time series were added back together in the computer using 
floating-point accuracy. 

The data series typically consisted of 16 records of contiguous samples at discrete 
y-positions making up a profile in the wall-normal direction. Each record contained 
512 samples acquired at 6 times the fundamental mode frequency. A profile would 
typically consist of 25-30 wall-normal positions, with the greater concentration of 
points occurring in regions of large gradients. 

The spanwise ( z )  centreline was measured with respect to the location of the stand- 
ing pattern of oblique mode crossings. Then z = 0 corresponded to the intersection 
of pair of oblique waves, which also corresponded to the spanwise location of the 
subharmonic mode amplitude maximum. 

The time series processing consisted of computing the time-averaged velocity, as 
well as obtaining frequency information from FFT-based spectra. The amplitudes 
corresponding to spectral peaks were converted to r.m.s. by taking the areas under 
the peaks and normalizing them by the frequency band width. Because the instability 
modes were input by the same computer that acquired the time series, a common 
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phase reference existed. Therefore data series taken at a different points in space and 
time could be related to each other. This allowed us to compute phase velocities and 
streamwise wavelengths for the instability modes. 

3. Results 
3.1. Basic flow 

Because the measurement wall for the experiment was the back wall of the tunnel test 
section, there was no physical leading edge to define a virtual origin, xu, for the bound- 
ary layer growth. Any comparisons to a Falkner-Skan mean flow development (and 
stability Reynolds number) then required the use of a reference location, referred to as 
the virtual leading edge. The location of the virtual leading edge was determined from 
the displacement thickness of the assumed Falkner-Skan boundary layer, given as 

(3.1) 61(x) = D1[(2 - P H ) ( X w e ) 1 1 / 2  

where 

and 

where f’  and q refer to the Falkner-Skan mean velocity and similarity wall-normal 
distance, respectively. When l j H  = -0.06, D1 = 1.33497, and 

6,calc = 1.916[(~ - X , ) V / U , ) ] ’ / ~ .  

61calc = 2.042[(~ - x,)v/U,)]”~. 

(3.4) 

(3.5) 
Mean velocity profiles were measured on the spanwise centreline, at the different 

streamwise positions from x = 1.02 to 1.38 m, for all the experimental conditions: 
unforced, two-dimensional only, and two- and three-dimensional combined. These 
were integrated to determine 61(x). For a known UJx) with each P H ,  values of 
&calc(x) were compared to the measured &(x) while varying x, in an iterative process 
to minimize the least-squared error. The result for PH = -0.06 was xu = 34 cm 
(downstream of the heating wires). For PH = -0.09 the value was xu = 39 cm. 
For both pressure gradients, the largest standard deviation between the measured 
streamwise development of d1 and the theoretical development using these values of 
xc, was less than 6%. 

The streamwise variation in d1 and the shape factor HI2 = 61/62 are shown in 
figure 3 for the case with p = -0.06. This pressure gradient gave the larger standard 
deviation, so that it represents the worst case in determining x,. The solid line 
corresponds to the theoretical variation, using the estimated value for x,. The small 
deviation that occurs for x > 1.43 m is due to mean flow distortion when the modes 
grow to large amplitudes. The corresponding mean velocity profiles for the more 
downstream x-locations are shown in figure 4. Here we observe a good collapse of 
the data onto the theoretical profile until the last x-position where the strong mean 
flow distortion is evident. 

When PH = -0.09, D1 = 1.41265, and 

3.2. Periodic mode development 
The conditions for the experiment are summarized with respect to the neutral linear- 
stability curves for the Falkner-Skan boundary layers in figure 5. The two curves 



T. C. Corke and S .  Gruber 

- Theoretical for bx = 4 . 0 6  (x, = 0.34 m) 

0 2-D and 3-D seeded (26 V) 
0 2-D and 3-D seeded (32 V) 

- A 2-D seeded only 

(4 

3 

4 2  

2 

1 
1 .0 1.2 1.4 1.6 

x (4 
FIGURE 3. Comparison of similarity quantities for Case 1: (a) and ( b )  H I 2 .  

correspond to the two values of PH. The frequency of the plane TS wave used in the 
experiment corresponded to a dimensionless value of F x lo6 = 96. This is indicated 
by the dashed line in the figure. Also indicated are the respective locations of the 
heating wires, and the streamwise bounds of the hot-wire surveys. 

Figure 6 shows velocity spectra in the wall-normal ( y )  direction at the most- 
upstream location (x = 1.02 m) with P H  = -0.06. This is representative of all the 
spectra, showing clear peaks corresponding to the fundamental (TS) mode at 38 Hz 
and the subharmonic three-dimensional mode at 19 Hz. The amplitude distributions 
in the wall normal direction of the two modes are taken from spectra such as these. 

A sensitive secondary check of the basic flow comes by comparing the amplification 
rate and streamwise wavenumber of the two-dimensional TS mode in the cases when 
it was the only mode seeded. Figure 7(a) shows the growth in maximum amplitude 
of this mode for two initial amplitudes in the boundary layer with PH = -0.06. For 
these, the natural log of the amplitude was taken to highlight exponential growth. 
The slope corresponds to the dimensional streamwise amplification rate, ai = 1.7 m-'. 
Signifying the linear regime in the two cases, the change in initial amplitude only 
shifted the curve, with the slope remaining the same. 

The streamwise wavenumber, a,, was derived from the downstream change in the 
mode phase, such as shown in figure 7(b) (details on the general determination of 
a, and ai from data such as these are given by Corke & Mangano 1989, $6.2). 
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FIGURE 4. Mean velocity profiles at different downstream locations for Case 1 
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FIGURE 5. Measurement locations with respect to neutral linear-stability curves for f l ~  = -0.06 
and -0.09. Subscripts 1 and 2 on R, refer to Cases 1 and 2. 
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(a) a 2D seeded (32 V) 
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FIGURE 7. Streamwise development of amplitude (a) and phase (b )  which were used to determine 
the linear amplification rate and streamwise wavenumber. PH = -0.06; (a) ai = 0.0022, f = 38 Hz; 
( b )  CI, = 0.1628, f = 38 Hz, 26 V. 
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FIGURE 8. Wall-normal distributions of phase (a)  and amplitude ( b )  for plane TS mode at the two 
pressure gradients. Open symbols correspond to Orr-Sommerfeld eigenfunction. Closed symbols 
correspond to measured data. c(, = 0.1559,ai = 0.0022. 

These correspond to the two- and three-dimensional modes in combination in Case 0. 
The square symbols denote the phase development for the plane TS mode. The 
triangle symbols correspond to the subharmonic three-dimensional mode. These 
show a constant streamwise wavenumber for the two modes over the region of 
measurement, with the ratio between two- and three-dimensional being 2:l as required 
for subharmonic resonance. 

In terms of the plane TS mode, the combination of their dimensionless wavenum- 
bers ai = 0.0022 and a, = 0.1628, is in excellent agreement with linear stability 
calculations at this position where Re, = 523. We also found excellent agreement in 
terms of the eigenfunction modulus and phase. These are shown in figure 8. The open 
symbols correspond to the y-eigenfunction for the u-component for the two values 
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FIGURE 9. Spanwise distribution of wall-normal amplitude profile ( a )  and phase-averaged mean- 
removed velocity (b)  for subharmonic three-dimensional mode at  x = 1.62 m. Case 2, mode f /2. 

of r l j ~  used in the experiment. These were determined from a spectral calculation 
(Herbert 1990) of the Orr-Sommerfeld equation. The experimental points are shown 
as the filled symbols. These correspond to the most upstream measurement location. 
The amplitudes are normalized by the maximum value so that the shape of the 
eigenfunction can be compared. The comparison between the experiment and theory 
is excellent, signifying that both the mean and perturbation flows at the initial stages 
are in accordance with linear-amplitude theoretical predictions. 

In the previous figures the documentation of the perturbation flow was in terms 
of the streamwise wavenumbers only. Figure 9 verifies the spanwise wavenumber 
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for the subharmonic mode. Figure 9(a) shows the amplitude distribution in the 
wall-normal direction at different spanwise ( z )  positions. These are shown both as a 
surface plot and as iso-amplitude contours. We chose to show this for Case 2 at a 
further downstream location (.x = 1.62 m) because the larger amplitude there makes it 
easier to determine the spanwise locations of amplitude maxima. Twice the spanwise 
distance between amplitude maxima corresponds to the spanwise wavelength, &, of 
the subharmonic mode. These are marked by the arrows in the figure. The streamwise 
wavenumber is p = 27c/Iw,. Our disturbance input was designed to introduce oblique 
waves with wave angles of 8 = *60". The spanwise wavelength is then 2n/(a,tan(B)). 
Using the dimensional a,,,L from figure 7(a ) ,  &/2 = 30.25 mm. This agrees well with 
the spacing between the maxima in figure 9(a). Also, for oblique mode pairs, there 
should be a 180" phase shift between the locations of the two amplitude maxima. 
To verify this, figure 9(b) shows for the same x-location the phase-averaged velocity 
fluctuation at a fixed distance above the wall where the amplitude is a maximum, 
at different positions in the spanwise direction. This is shown as a surface plot and 
constant-level contours. From this we can see that at a fixed time in the cycle, for 
example t = 20, at the spanwise position of one maximum ( z  = 2.5 mm), we are at 
the top of the wave, whereas at the position of the other maximum (z = 32 mm) we 
are at the bottom of the wave, signifying a 180" phase difference. Therefore based on 
these, the conditions for the subharmonic three-dimensional mode have been verified. 

The results to this point were intended to document the basic flow and the 
initial conditions for the input linear modes which would lead to subharmonic 
resonance. These were a necessary precursor to our main interest which was in the 
nonlinear streamwise development of these modes. The streamwise development of 
the maximum amplitude normalized by the local boundary layer edge velocity, U,, 
is shown for the two pressure gradients in figure 10. The circle symbols correspond 
to the development of the plane TS mode when it was seeded by itself. The triangle 
and square symbols correspond to the plane TS and three-dimensional modes in 
combination. The solid curves through the points are intended only to guide the 
eye. In both figures 10(a) and 10(b), the initial amplitude of the two-dimensional 
mode, alone or with the three-dimensional mode, remained the same, although they 
were different for the two different pressure gradients (see table 1). For the three- 
dimensional mode, the z-location of the measurements corresponded to that of the 
subharmonic mode amplitude maximum at z = 2.5 mm such as was shown in 
figure 9(a). The general features we observe in the development of the two modes 
are : 

(i) the rapid growth of the subharmonic mode, which according to linear theory 
is less amplified than the fundamental two-dimensional mode; and 

(ii) the eventual larger-than-linear growth of the fundamental mode further down- 
stream. 
The first of these is due to a parametric resonance between the fundamental and 
subharmonic modes. The second is due to a back-interaction of the subharmonic 
mode with the fundamental which occurs when the subharmonic mode reaches a 
large amplitude. 

In both cases, the initial amplitudes were comparable. The effect of the adverse 
pressure gradient was: 

(1) to produce a more rapid growth of both modes; 
(ii) to cause a greater overall amplitude of the fundamental mode compared to 

(iii) to significantly increase the amplitudes reached by both modes; and 
the subharmonic mode; 
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FIGURE 10. Streamwise development of maximum amplitude for two cases: ( a )  BH = -0.06, Case 
Two-dimensional (32V) and Case 1; and (b)  BH = -0.09, Case Two-dimensional (30V) and Case 2. 

(iv) to produce a relatively short (almost nonexistent) amplitude saturation region. 
With a zero pressure gradient case of comparable initial amplitudes (Corke & 
Mangano 1989), the maximum amplitude of the subharmonic mode only reached 
a value of 4.5% at amplitude saturation. In that case, the fundamental mode ampli- 
tude reached only 20% of the subharmonic mode amplitude. Also, there was a broad 
region where the amplitudes of both modes saturated and decayed. These features 
are in sharp contrast to the present results contained in figure 10. 

3.3. Amplitude model 
The most relevant model for subharmonic resonance in adverse pressure gradient 
boundary layers comes from Goldstein & Lee (1992). Others include the nonlinear 
model of Mankbadi (1990, 1991) and Mankbadi et al. (1993), which were derived for 
a Blasius layer, and the recent weakly nonlinear (linear-quadratic) model by Zelman 
& Maslennikova (1993a,b). Each of these has a parametric resonance leading to the 
initial growth of the subharmonic three-dimensional mode. The Goldstein & Lee 
and Mankbadi models also include a quartic dependence of the fundamental mode 
amplitude on the amplitude of the subharmonic. 

Our goal was to use a general form of coupled amplitude equations in which we 
could determine coefficients by a least-square-error fit of the model to the experimental 
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results. We intended that these model equations contain the same physics as those 
developed by Goldstein & Lee (1992; equation 5.50). To achieve this, a convenient 
starting point was the form of the evolution equations given by Mankbadi (1991). 
These are in complex form, 

(3.6) 1 - = a4( 1 + R?/R2)[(Ko + iKi)A + iM1(94.5/3.1.5)ABB* dA 
dR 

- = 04(l + R?/R2)[KObB + 0.37c(g3/A)iB*A - 0.4iM(94.5/~1.5)B2B*] dB 
dR 

-~M~(L%~/E.~B*B'], 

where A and B refer to the fundamental and subharmonic modes respectively. In 
(3.6), a is a constant small-frequency parameter; 9 is a Reynolds number scaling 
parameter equal to d 0 R ;  Ri is an initial Reynolds number (equal to 523 in Case 1 and 
503 in Case 2); KO and KOb are the linear amplification rates; M2 is a back-reaction 
coefficient and M = M, + iMi is a self-interaction coefficient, both of which are 
constant functions of the oblique wave angle 0;  and ;I is the skin friction coefficient. 

These equations were simplified by: (i) noting that the subharmonic mode wave 
angles in the experiment were 0 = 60", which leads to dropping the linear frequency 
detuning parameter, Ki, (ii) dropping the mutual interaction term, iM1 (9?4.5/A1.5)ABB* 
in the equation for A (this was also dropped by Mankbadi ef a!. 1993) and (iii) 
choosing a subharmonic phase shift, &, = 0 and frequencies ul = 2012, which model 
the maximum growth. 

Complex periodic functions were substituted for A ,  B and B*, and the real and 
imaginary parts were separated. The equations for the real part are 

= a4( l + R;/R*)[KOh/B/ + 0.3.n(9'/A)lBllA( + 0.4M,(945/A1 5)1B13], (3.7) 1 
I 

dR 
KO = A 2 / ( 2 & 9 )  - (7~/8)(.@/3~~),  
K~~ = [ A ~ ( ~ ~ ~  e ) l ' * / ~  - ( . / s ) (a?*/~~ cos ~)] / (cos  e + i /  cos e). 

Equation (3.7) represent the amplitude envelope as a function of Reynolds number 
(R = ( U e x / v ) 1 ' 2 )  for the two modes. We write these in a general form as 

A- 
-- 

(3.8) 

linear mean diu 

d ' A l  - (Cl + C;?/R + C3R2 + C4/R3)1AI + (CsR6 + CsR4)IBI4, 
dR 

dR 
~- d ' B I  - (C, + Cs/R + CgR2 + Clo/R3)/BI + (CIIR + CnR3)1AIIBI 

- ( C I p  + C&51B(3. 

Here we see that the evolution of the fundamental mode amplitude, JAl, comes from 
its linear growth, which we denote as a combination of a linear part and a correction 
for divergence of the mean flow, and a quartic dependence on the subharmonic mode 
amplitude. The evolution of the subharmonic mode amplitude, IBI, comes from a 
linear growth, a parametric interaction with the fundamental mode, and a cubic 
self-interaction. This form is also very similar to that of Mankbadi et al. (1993). 
Comparing these equations to the amplitude equation of Goldstein & Lee (1992, 
equations 5.50 and 5.51) we see that they are also similar if we neglect the history 
effects. For example (following our notation), the amplitude development of the 
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two-dimensional mode involves a linear part ( A )  and a quartic interaction (B4). They 
however had retained the mutual interaction term (B’A) which we dropped. For the 
subharmonic mode, we both have the linear growth (B) ,  parametric interaction ( A B )  
and the cubic self-interaction ( B 3 )  terms. 

Our method was to determine Ci, i = 1, ..., 14, by a least-squares fit of the 
maximum normalized amplitudes of the fundamental and subharmonic modes with 
R. For this, a cubic-spline fit to the experimental amplitude evolution was used to 
determine dlAl/dR and dlBI/dR. Having determined the best fit of the model to 
the experimental data, the coupled amplitude equations were numerically integrated 
using a second-order backward-Euler method with a variable-step-size algorithm to 
maintain an error < The use of an implicit method for integrating the equations 
was found to be necessary because of their stiff nature. The integration was started 
at the conditions of the most-upstream measurement location. 

The comparison of the model to the amplitude development with p = -0.06, 
Case 1, is shown in figure l l(a).  The original data are shown as the symbols, and 
were previously shown in figure 10(a). The solid and dashed curves correspond to the 
fit of a cubic spline to the data. The spline was used to calculate the derivatives used 
in the determination of the best coefficients for (3.8). The heavy-dotted curves result 
from the integration of (3.8). The initial amplitudes and Reynolds number correspond 
to the most-upstream data values. In this case we see an excellent agreement between 
the coupled amplitude model and the experimental data. 

The comparison of the evolution equation (3.8) to the data with PH = -0.09, 
Case 2, is shown in figure 1l(b). These data were previously shown in figure 10(b). 
Again the agreement is excellent. 

In both these comparisons, the correction to the linear growth for the mean flow 
divergence was included. We demonstrate that we cannot get these good results by 
any general fit, by not including the mean flow correction for the previous data. The 
result is shown in figure 11(c). This shows a very poor comparison to the original 
data. As we might expect, the error in neglecting the mean flow divergence was less 
pronounced, although still noticeable, in the lower adverse pressure gradient case 
(Case 1). 

We want to emphasize that our goal was not to try ‘any fit’ but to base our general 
fit on a form which had a basis from first principles. Slight variations of the general 
form of these amplitude equations for subharmonic resonance in a Blasius boundary 
layer have previously been investigated in the same facility (Hsia 1993). These mainly 
involved the addition of nonlinear interaction terms such as A2B and B’A. These 
generally produced results with large excursions from the experimental development 
of a scale similar to those in figure 11(c). As we pointed out, the two coupled 
equations are extremely ‘stiff’ and slight differences in the amplitudes anywhere along 
their development have a large integrated effect downstream. Based on this, we 
believe that any ad hoc form of coupled model equations will not produce the good 
results produced by (3.8). 

4. Discussion 
As pointed out in the Introduction, this study was motivated in part by the need 

to predict if and where transition to turbulence would occur in adverse pressure 
gradient boundary layers in which the dominant primary instability mechanism is 
TS waves. These conditions are relevant to wings which are not highly swept. 
Upstream of the maximum thickness point, the favourable pressure gradient will 
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FIGURE 11. Streamwise development of maximum amplitude obtained from model equation (3.8). 
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greatly suppress the growth of disturbances. Beyond this point, the reverse is the 
case. Here even a mild adverse gradient will greatly accelerate the growth of linear 
instability modes. With faster linear growth, nonlinear amplitudes will be reached 
more quickly. This will bring into play secondary instabilities, the most important 
of which results in the first growth of three-dimensional disturbances, which is an 
essential step to reaching a turbulent state. Correlation techniques such as eN, which 
model only linear mechanisms, do not account for the nonlinear three-dimensional 
mode development. However, their use has continued because of their simplicity over 
numerical (Navier-Stokes) models. This is an important aspect when used as a tool 
for design. The amplitude models such as those developed by Goldstein & Lee (1992) 
and Mankbadi et al. (1993) are meant to be an alternative to numerical methods, 
which embody the nonlinear mechanisms, while retaining a degree of simplicity 
needed for design. The purpose of this work was to then compare the streamwise 
evolution of instability modes in an experiment with those predicted by the relevant 
amplitude models. Because the evolution is dependent on the initial conditions 
(amplitudes of the initial modes), these had to be known and well controlled in the 
experiment. 

Overall, we found that the general form of the model equations (3.8) worked 
well and confirmed that they contain the proper physics for the sensitive coupled 
interaction present in three-dimensional mode subharmonic resonance. They indicated 
the importance of the mean flow divergence in the linear growth of the modes, and 
the quartic dependence of the fundamental mode amplitude on the subharmonic 
amplitude when the two modes become fully coupled. 

In general there was a benefit in the use of the adverse pressure gradient boundary 
layer in testing the amplitude evolution model because we could more quickly reach 
the nonlinear stages while still maintaining low initial amplitudes. Compared to a 
Blasius layer, the adverse pressure gradient leads to faster linear growth of the plane 
TS mode. It therefore more quickly reaches amplitude levels which are large enough 
to produce the parametric resonance with the subharmonic oblique modes. This also 
occurs further upstream of Branch I1 so that the extended linear amplification of the 
TS mode leads to extra large amplitudes of the subharmonic. This in turn leads to 
a stronger back interaction from the subharmonic mode to the fundamental. As a 
result, the maximum amplitude reached by the fundamental mode is a significantly 
larger percentage of the maximum subharmonic amplitude than for the Blasius 
layer. For example for comparable initial conditions, in a Blasius flow the ratio 
~ ’ ( f / 2 ) ~ ~ ~ / u ’ ( f ) ~ ~ ~  was approximately 5 (Corke & Mangano 1989). In the present 
results with p = -0.06 the ratio was 2.9 and with = -0.09 it was nearly unity (1.3). 

With an adverse pressure gradient the analysis of Goldstein & Lee (1992) pre- 
dicted that the amplitude evolution should exhibit an ‘explosive’ growth when the 
subharmonic mode amplitude reaches nonlinear levels. This entered through the cu- 
bic self-interaction term which caused a rapid increase in the instability growth, and 
ultimately lead to a singularity at a finite downstream position. In this context we 
did not see such an ‘explosive’ growth. However, the streamwise extent of amplitude 
saturation was extremely short compared to the Blasius layer. For example in fig- 
ure 17 of Corke & Mangano (1989), the two most-amplified subharmonic resonance 
cases had a broad saturation region which was followed by a gradually decreasing 
amplitude which slowly merged into the turbulent state. In Cases 1 and 2 here, the 
extent to which the development of the modes could be followed ended with the 
most downstream points shown in the figure. Beyond those points, it was difficult to 
identify a spectral peak. On the basis of the spectra and the degree of unsteadiness 
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Mean velocity profile (a) and subharmonic mode amplitude distributions ( b )  with 
PH = -0.09, Case 2. 

series, the flow looked turbulent. What is the origin of this different - 

behaviour produced by the adverse pressure gradient? 
As pointed out, the maximum amplitudes reached by the subharmonic mode in 

these two cases with adverse pressure gradient were twice as large as those in a Blasius 
layer with comparable initial conditions. As a result of these large amplitudes, the 
mean profile developed inflexions away from the wall. These are shown in figure 12(a). 
This corresponds to the last downstream position for PH = -0.09. Shown in the figure 
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are the mean profile data points compared to the theoretical profile which is the solid 
curve. Upstream of this point, the measured mean profile collapsed well onto the 
theoretical profile, such as was shown for Case 1 in figure 4. In figure 12(a), three 
inflexion regions are identified and numbered. Label 1 denotes a change in the slope 
near the critical layer. This inflexion is a characteristic of subharmonic resonance. It 
results from the mean flow distortion when the subharmonic mode grows to large 
amplitude and has been observed in previous measurements in the same facility (Hsia 
1993), and is predicted in the analysis of Mankbadi et al. 1993. 

Labels 2 and 3 denote inflexions in the mean profile which are located away from 
the wall. Such high inflexions are never observed when the initial TS amplitudes are 
small. These are generally characteristic of a high-shear layer which is a feature of 
fundamental mode (K-type) transition. With K-type transition, the high-shear layer 
is caused by large initial two-dimensional mode amplitudes. 

We observe a correspondence between the three labelled locations and peaks in the 
wall-normal amplitude distribution for the subharmonic mode shown in figure 12(a). 
The dominant peaks are at locations 1 and 2. Figure 12(b) shows the amplitude 
distributions for the last four measurement locations. The labelled peaks only 
appeared in the last two of these, and this coincided with the first appearance of 
the inflexions in the mean profile. A similar double-peaked distribution was also 
observed in the DNS-simulation of subharmonic-mode transition with the slightly 
larger adverse pressure gradient of PH = -0.1, by Kloker & Fasel (1990). 

We can get a further appreciation of the transition process for this case (Case 2) 
from the streamwise evolution of velocity time traces. Samples are shown in fig- 
ure 13(a). These correspond to two R, locations. The top trace is at R, = 677, which 
is in the middle of the resonant growth region of the f / 2  mode (figure 10). The 
bottom trace is at R, = 718, which is at the end of the amplitude saturation region 
for the f / 2  mode. The y-locations of these traces correspond to where u’/Ue is a 
maximum (figure 12b). These traces are a representative set of the total time series 
acquired in the experiment, and demonstrate the essential features we observe. 

At the lower R, location, the velocity time series is very regular. The dominant 
period corresponds to the subharmonic mode (19 Hz). These traces have not been 
phase averaged, so that strong periodicity exhibited in this trace is an example of 
the repeatability of one wave and the next. In the trace at the higher-R, location, 
we still observe a large degree of periodicity, for example in the time interval from 
0.3 to 0.45 s. However there are instances when higher frequencies appear in the 
velocity fluctuations, such as in the interval near t = 0.25 s. The appearance 
of these higher-frequency fluctuations, which are irregularly dispersed in the time 
series, suggests an additional instability of a thin, high-shear layer that we associate 
with the mean-profile inflexion. One can observe that this is different from what 
normally occurs in subharmonic mode transition in a Blasius boundary layer, by 
contrasting this time series with the equivalent location in figure 22(d) of Corke 
& Mangano (1989). There, higher and lower frequencies appear everywhere and 
uniformly in the velocity fluctuations. Corke & Mangano associated this with a 
frequency ‘detuning’ of the fundamental-subharmonic resonance (see also Corke 
1995). The bellwether of this process is the appearance of dominant low-frequency 
components in the velocity spectra (e.g. figure 23(d) of Corke & Mangano). Velocity 
spectra in our case, corresponding to the x-location of the lower time trace at 
R, = 718, are shown in figure 15(b). Here the spectral peaks corresponding to 
the f (38 Hz) and f / 2  (19 Hz) modes are very large and well defined compared 
to the background fluctuations. The background fluctuation amplitude has grown 
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compared to upstream locations, for example seen in the spectra in figure 6, which 
is for Case 1, but is otherwise representative. In this case, the broadband results 
from the somewhat randomly occurring higher-frequency fluctuations seen in the 
downsteam time-trace. We do not observe in this case the dominant low-frequency 
modes we associate with the subharmonic transition in the zero pressure gradient 
flow. 
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The observation of the high-shear layer, which is not otherwise a general part of 
subharmonic mode transition, provides a short (inviscid) time scale for the last stage 
of transition to turbulence. This substantially shortens any energy saturation region 
compared to our previous experience in a Blasius boundary layer (Corke & Mangano 
1989). With this we found a sharp transition from the coherent mode region to 
broadband fluctuations. This may be analogous to the ‘explosive’ growth at the end 
of the subharmonic mode development predicted by Goldstein & Lee (1992). In any 
event it is dramatically different from the behaviour with a zero pressure gradient and 
needs to be accounted for in transition prediction where adverse pressure gradients 
are present. 

We want to acknowledge the useful discussions with Dr Reda Mankbadi and 
helpful comments of Dr Sang So0 Lee. This work was supported by a grant from 
NASA Lewis Research Center, No. NAG3-1519. 
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